PARTICIPANTS

Core Oversight Team
Karen Onel, MD (Principal Investigator)
Daniel B. Horton, MD, MSCE (Content Expert)
Daniel Lovell, MD, MPH (Content Expert)
Susan Shenoi, MD (Content Expert)
James Reston, MD (Literature Review Leader)
Carlos A. Cuello Garcia, MD, PhD (GRADE Expert)

Literature Review Team
Fatima Barbar-Smiley, MD, MPH
Ashley Cooper, MD
Barbara Edelheit, MD
Elaine Flanagan, MD
Miriah Gillispie-Taylor, MD
Kimberly Hays, MD
Melissa Mannion, MD, MPH
Rosemary Peterson, MD
Nadine Saad, MD
Ann Marie Szymanski, MD
Amit Shah, MD, MPH (ACR)
Nancy Sullivan, BA
Rebecca Trachtman, MD
Marat Turgunbaev, MD, MPH (ACR)
Keila Veiga, MD

Voting Panel
Sheila Angeles-Han, MD, MSc
Mara Becker, MD, MSCE
Brian Feldman, MD, MSc, FRCPC
Polly Ferguson, MD
Harry Gewanter, MD
Jaime Guzman, MD MSc FRCPC
Jennifer Horonjeff
Yukiko (Yuki) Kimura, MD
Tzielan Lee, MD
Katherine Murphy
Peter Nigrovic, MD
Michael Ombrello, MD
Egla Rabinovich, MD, MPH
Rayfel Schneider, MBCh
Melissa Tesher, MD

Patient Panel
TBD

ACR Staff
Robin Lane
Amy Turner
Regina Parker

ACR Board Liaison
Marisa Klein Gitelman, MD, MPH
ORGANIZATIONAL LEADERSHIP AND SUPPORT

This project of the American College of Rheumatology (ACR) has the broad objective of developing an evidence-based clinical practice guideline for the management of juvenile idiopathic arthritis (JIA) in topic areas not already covered by the ACR-Arthritis Foundation 2019 JIA and uveitis guidelines.

BACKGROUND

Juvenile idiopathic arthritis (JIA) is a collection of chronic idiopathic autoimmune non-infectious arthritides. By definition, disease onset is prior to 16 years of age and includes joint inflammation that is present for 6 weeks or more after the exclusion of other forms of arthritis. JIA affects approximately 1 in 1,000 children; approximately 50% of children have oligoarticular disease (involves 4 or fewer joints), 40% have polyarticular (involves 5 or more joints), and ~10% have systemic symptoms along with arthritis (i.e., systemic arthritis).

The cardinal clinical features are persistent swelling and pain of the joints. Morning stiffness may be present and typically improves throughout the day with joint use. Linear growth delay can occur in children with JIA, and untreated arthritis can lead to severe joint deformities and disability. Uveitis is the most common extra-articular manifestation and can lead to ocular complications and permanent vision loss. Regular screening by ophthalmology for early detection and timely treatment is crucial.

Treatment depends on the severity of disease and associated manifestations, including presence of systemic features and/or extra articular manifestations. Biologic therapies have significantly changed the approach to treatment for JIA, and new data continue to accumulate regarding their effectiveness. Given these and other new data, updated recommendations for the treatment of JIA patients are needed to help clinicians optimize the care of these patients.

OBJECTIVES

The objective of this project is to develop recommendations for the pharmacologic and non-pharmacologic treatments for treatment juvenile idiopathic arthritis (JIA), covering topics that were not covered in the ACR-Arthritis Foundation 2019 JIA and uveitis guidelines.

Specifically, we aim to:

1. Develop recommendations for the use of glucocorticoids, non-biologic, and biologic disease-modifying anti-rheumatic drugs (DMARDs) for the treatment of children with oligoarticular JIA arthritis, taking into consideration both safety and efficacy issues.
American College of Rheumatology (ACR)
Juvenile Idiopathic Arthritis Guideline

Project Plan – August 2019

1. Develop recommendations for the use of glucocorticoids, non-biologic, and biologic disease-modifying anti-rheumatic drugs (DMARDs) for the treatment of children with TMJ arthritis, taking into consideration both safety and efficacy issues.

2. Develop recommendations for the use of non-biologic and biologic disease-modifying anti-rheumatic drugs (DMARDs) for the treatment for children with systemic JIA, taking into consideration both safety and efficacy issues.

3. Develop screening guidelines for the use of conventional and biologic DMARDs for the treatment of children with JIA.

4. Develop guidance for the use of immunizations for children with JIA.

5. Develop guidance for the use of imaging for children with JIA.

METHODS

Identification of Studies
Literature search strategies, based on PICO questions (Population/patients, Intervention, Comparator, and Outcomes; see Appendix A) will be developed by the Core Team and a research librarian, after input into the PICO questions was received from the entire guideline development team. The search strategies will be peer reviewed by another medical librarian using Peer Review of Electronic Search Strategies (PRESS) (1). Searches will be performed in OVID Medline (1946 +), Embase (1974 +), the Cochrane Library, and PubMed (mid-1960s +).

The search strategies will be developed using the controlled vocabulary or thesauri language for each database: Medical Subject Headings (MeSH) for OVID Medline, PubMed and Cochrane Library; and Emtree terms for Embase. Text words will also be used in OVID Medline, PubMed, and Embase, and keyword/title/abstract words in the Cochrane Library.

Search Limits
Only English language articles will be retrieved.

Grey Literature
The websites of appropriate agencies, such as the Agency for Healthcare Research and Quality (AHRQ), will be searched for peer-reviewed reports not indexed by electronic databases.

Literature Search Update
Literature searches will be updated just before the voting panel meeting to ensure completeness.
Inclusion/Exclusion Criteria

See PICO questions (Appendix A), which outline the defined patient population, interventions, comparators and outcomes.

Management of Studies and Data

References and abstracts will be imported into bibliographic management software (Reference Manager), duplicates removed, and exported to Distiller SR, a web-based systematic review manager. Screening and data abstraction forms will be created in Distiller SR. Search results will be divided among reviewers, and two reviewers will screen each title/abstract, with disagreements at the title/abstract screening stage defaulting to inclusion for full manuscript review. Following the same dual review process, disagreements at the full manuscript screening stage will be discussed and adjudicated by the literature review leadership, if necessary.

Phases

1. A search for randomized controlled trials and observational studies about interventions aimed at treatment of JIA and prevention of JIA flares and complications will be performed to determine existing studies covering outcomes of interest.
2. Additionally, recently published systematic reviews covering outcomes of interest will also be sought and used for reference cross-checking.
3. Chosen studies will be quality-assessed using the Cochrane Risk of Bias Tool, the Cochrane Effective Practice and Organization of Care Risk of Bias Tool, the Newcastle-Ottawa Scale (4), or a similar tool.
4. Subsequently, identified studies will be assessed using the RevMan (5) and GRADE Pro tools (6).

GRADE Methodology

GRADE methodology will be used in this project to grade available evidence and facilitate development of recommendations. The certainty in the evidence (also known as ‘quality’ of evidence) will be graded as high, moderate, low or very low. The recommendations will have a strength, strong or conditional, and a direction, as in favor or against the intervention. The strength of recommendations will not depend solely on the certainty in the evidence, but also on patient preferences and values, and the weight between benefits and harms. A series of articles that describe the GRADE methodology can be found on the GRADE working group’s website: www.gradeworkinggroup.org.
Analysis and Synthesis

The literature review team will analyze and synthesize data from included studies that address the PICO questions. An evidence profile, including a GRADE Summary of Findings table, will be prepared for each PICO question using Review Manager (RevMan) (5) and GRADEprofiler (GRADEpro) software (6). The Summary of Findings table contains the benefits and harms for each outcome across studies, the assumed and corresponding risk for comparators and interventions (95% CI), the absolute risk and relative effect (95% CI), the number of participants/number of studies, and the certainty in the evidence for each critical and important outcome (i.e., high, moderate, low or very low).

The evidence profile documents the overall certainty in the evidence for each critical and important outcome across studies and summarizes the rationale of the GRADE criteria for downgrading (risk of bias, inconsistency, indirectness, imprecision and publication bias), or upgrading the certainty in a body of evidence (large magnitude of effect, dose-response gradient, and all plausible confounding that would reduce a demonstrated effect).

Development of Recommendation Statements

PICO questions will be revised into drafted recommendation statements. Using the GRADE Evidence Profiles and Summaries of Findings tables, the voting panel, consisting of 12 pediatric rheumatologists and two patient representatives, will consider the drafted recommendation statements in two stages. The first assessment will be done individually, and the results will be anonymous; this vote will only be used to determine where consensus might or might not already exist and develop the voting panel meeting agenda. At the face-to-face voting panel meeting, chaired by the principal investigators, the panelists will discuss the evidence in the context of their clinical experience and expertise to arrive at consensus on the final recommendations. The voting panel meeting discussions will be supported by the literature review leader, the GRADE expert, and selected members of the literature review team, who will attend the meeting to provide details about the evidence, as requested. Voting panel discussions and decisions will be informed by a separately convened patient panel, which will meet in the days before the voting panel meeting, to provide unique patient perspectives on the drafted recommendations based on their experiences and the available literature.

PLANNED APPENDICES (AT MINIMUM)

A. Final literature search strategies
B. GRADE evidence profiles and summary of findings tables for each PICO question
AUTHORSHIP

Authorship of the guideline will include: principal investigator, Dr. Karen Onel, as the lead author; a literature review leader to be determined; Drs. Daniel Horton, Susan Shenoi and Daniel Lovell, content experts; and Dr. Carlos A. Cuello Garcia, GRADE expert. Members of the literature review team and voting panel will also be authors. The PI will determine final authorship, dependent on the efforts made by individuals throughout the guideline development process, using international authorship standards as guidance.

DISCLOSURES/CONFLICTS OF INTEREST

The ACR’s disclosure and COI policies for guideline development will be followed for this project. These can be found in the ACR Guideline Manual on this page of the ACR web site, under Policies & Procedures. See Appendix B for participant disclosures.

REFERENCES

APPENDIX A – PICO Questions

Oligoarticular JIA

POPULATION:

This group includes children with Oligoarticular JIA (< 5 joints involved). This includes children from different ILAR JIA categories but excludes children with systemic arthritis or axial arthritis. These guidelines are not intended to be applicable to children with JIA and other active extra-articular manifestations (e.g., psoriasis, uveitis, IBD) that may influence treatment decisions. Treatment groups currently considered are 1) low disease activity (LDA) versus moderate/high disease activity as determined by JADAS and 2) presence or absence of risk factors (presence of risk factors defined as one or more of the following: + RF, + anti-CCP, + HLA-B27, radiographic evidence of joint damage). Initial therapy is disease activity irrespective. The questions are intended to address typical patients.

INTERVENTIONS:

| Nonsteroidal anti-inflammatory drugs (NSAIDs) | Any at therapeutic dosing [ibuprofen, naproxen, tolmentin, indomethacin, meloxicam, nabumetone, diclofenac, piroxicam, etodolac, celecoxib] |
| Conventional disease modifying anti-rheumatic drugs (DMARDs) | Methotrexate, Sulfasalazine, Hydroxychloroquine, Leflunomide |
American College of Rheumatology (ACR) Juvenile Idiopathic Arthritis Guideline

Project Plan – August 2019

| Biologic DMARDs | Tumor necrosis factor alpha inhibitors (TNFi): Adalimumab, Etanercept, Infliximab, Golimumab, Certolizumab pegol
| | Other Biologic Response Modifiers (OBRM): Abatacept, Tocilizumab, Rituximab, Tofacitinib, Secukinumab
| Glucocorticoids | Oral: Any
| | Intraarticular: Triamcinolone Acetonide, Triamcinolone Hexacetonide, Methylprednisolone Acetate
| Non-medical interventions | Physical Therapy (PT)
| | Occupational Therapy (OT)
| | Dietary changes
| | Herbal supplements

OUTCOMES:

Critical Outcomes:
- Quality of life (QOL) (e.g., PedsQL, CHQ, PROMIS)
- Disease activity (including active joint count, patient/parent global, MD global, ESR/CRP) as measured by the individual variables and/or composite disease activity measure (e.g., Pediatric ACR response, JADAS)
- ACR provisional criteria for clinical inactive disease
- Functional ability (e.g., CHAQ/PROMIS)
- Joint damage requiring surgical intervention
- Significant limb length discrepancy
American College of Rheumatology (ACR)
Juvenile Idiopathic Arthritis Guideline

Project Plan – August 2019

203 - Significant or life-threatening adverse events (e.g., hospitalization, infection, malignancy)

204

Important Outcomes:
205 - Arthritis-related pain
206 - Preservation of normal growth and development
207 - Fatigue
208 - Joint damage
209 - Significant medication side effects leading to medication discontinuation

Risk Factors:
210 - Signs of joint damage
211 - Presence of RF or CCP antibodies
212 - Severe functional impairment

NSAIDS
213 1. In patients with oligoarticular JIA, should a trial of consistent NSAIDs be recommended and should there be any preferred NSAID treatment?

214

Glucocorticoids
215 2. In patients with oligoarticular JIA, should adding intraarticular glucocorticoids to initial therapy be recommended?
216 3. In patients with oligoarticular JIA, should adding oral steroids to initial therapy be recommended?
217 4. In patients with oligoarticular JIA, should a specific steroid type be recommended for intraarticular injection?
Non-biologic DMARDs
5. In patients with oligoarticular JIA, should DMARD therapies be recommended, and should there be any preferred order of treatment: methotrexate (subcutaneous and oral), leflunomide, sulfasalazine, and/or hydroxychloroquine?

Biologics
6. In patients with oligoarticular JIA, should biologic therapies be recommended, and should there be any preferred order of treatment: anti-TNF treatment, biologic treatments with other mechanisms of action?

Non-medical treatments
7. In patients with oligoarticular JIA, should dietary or herbal interventions be recommended, in addition to whatever other therapeutic options are given, versus not recommending them?

PT/OT (REGARDLESS OF CONCURRENT MEDICATION USE)
8. In patients with oligoarticular JIA, regardless of disease activity and risk factors, should PT/OT versus no PT/OT (regardless of concomitant medical therapy) be recommended?

Risk factors and disease activity
9. In patients with oligoarticular JIA, should risk factors alter the treatment paradigm?
10. In patients with oligoarticular JIA, should disease activity measures alter the treatment paradigm?
TMJ

POPULATION:

This group is intended to include patients with predominant TMJ arthritis who may include patients from any of the ILAR JIA categories. Patients may or may not have active peripheral joint disease in addition to active TMJ arthritis to be included in these recommendations, but it is anticipated that patients with peripheral Oligoarticular JIA would otherwise be treated using the Oligoarticular JIA recommendations included in this update.

DEFINITIONS:

Active TMJ arthritis is disease considered active by the examining clinician based upon clinical exam findings, patient-reported symptoms of inflammatory jaw pain, and prior or current MRI findings consistent with active TMJ inflammatory disease.

INTERVENTIONS:

<table>
<thead>
<tr>
<th>Nonsteroidal anti-inflammatory drugs (NSAIDs)</th>
<th>Any at therapeutic dosing [ibuprofen, naproxen, tolmentin, indomethacin, meloxicam, nabumetone, diclofenac, piroxicam, etodolac, celecoxib]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucocorticoids</td>
<td>Oral: Any</td>
</tr>
<tr>
<td></td>
<td>Intraarticular: Triamcinolone Acetonide, Triamcinolone Hexacetonide, Methylprednisolone acetate</td>
</tr>
</tbody>
</table>
American College of Rheumatology (ACR)
Juvenile Idiopathic Arthritis Guideline

Project Plan – August 2019

<table>
<thead>
<tr>
<th>Biologic DMARDs</th>
<th>Tumor necrosis factor-alpha inhibitors (TNFi): Adalimumab, Etanercept, Infliximab, Golimumab, Certolizumab pegol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Other Biologic Response Modifiers (OBRM): Abatacept, Tocilizumab, Rituximab, Tofacitinib, Secukinumab</td>
</tr>
<tr>
<td>Non-biological disease modifying anti-rheumatic drugs (DMARDs)</td>
<td>Methotrexate, Sulfasalazine, Hydroxychloroquine, leflunomide</td>
</tr>
<tr>
<td>Non-medical interventions</td>
<td>Physical therapy (PT), including devices such as mouth guards</td>
</tr>
<tr>
<td></td>
<td>Dietary changes</td>
</tr>
<tr>
<td></td>
<td>Herbal supplements</td>
</tr>
</tbody>
</table>

OUTCOMES:

Critical Outcomes:
- Quality of life (QOL) (e.g., PedsQL, CHQ, PROMIS)
- Disease activity components (e.g., active joint count, patient/parent global, MD global, ESR/CRP) as measured by the individual variables and/or composite disease activity measure (e.g., Pediatric ACR response, JADAS)
- ACR provisional criteria for clinical inactive disease
- Functional ability (e.g., CHAQ/PROMIS)
- Joint damage requiring surgical intervention
- Significant or life-threatening adverse events (e.g., hospitalization, infection, malignancy)
- Resolution of MRI findings consistent with active TMJ arthritis
Important Outcomes:
- Arthritis-related pain
- Preservation of normal growth and development
- Fatigue
- Joint damage
- Significant medication side effects leading to medication discontinuation

ACTIVE TMJ ARTHRITIS

NSAIDS
11. In patients with active TMJ arthritis, should a trial of consistent NSAIDs be recommended and should there be any preferred NSAID treatment?

Glucocorticoids
12. In patients with active TMJ arthritis, should adding intraarticular glucocorticoids to initial therapy be recommended?
13. In patients with active TMJ arthritis, should adding oral glucocorticoids to initial therapy be recommended?
14. In patients with active TMJ arthritis, should a specific steroid type be recommended for intraarticular injection?

Non-biologic DMARDs
15. In patients with active TMJ arthritis, should DMARD therapies be recommended, and should there be any preferred order of treatment: methotrexate (subcutaneous and oral), leflunomide, sulfasalazine, and/or hydroxychloroquine?

Biologics
16. In patients with active TMJ arthritis, should biologic therapies be recommended, and should there be any preferred order of treatment: anti-TNF treatment, biologic treatments with other mechanisms of action?
Non-medical treatments

17. In patients with active TMJ arthritis, should dietary or herbal interventions be recommended, in addition to whatever other therapeutic options are given, versus not recommending them?

PT (REGARDLESS OF CONCURRENT MEDICATION USE)

18. In patients with active TMJ arthritis, regardless of disease activity and risk factors, should PT versus no PT (regardless of concomitant medical therapy) be recommended?

Risk factors and disease activity

19. In patients with active TMJ arthritis, should risk factors alter the treatment paradigm?

Systemic JIA (sJIA) with and without Macrophage Activation Syndrome (MAS)

POPULATION:

Broad population includes systemic JIA with or without MAS, both overt and subclinical. These guidelines are not intended to be applicable to children with other categories of JIA and other active extra-articular manifestations (e.g., psoriasis, uveitis, IBD) that may influence treatment decisions.

Patients divided into 3 treatment groups: 1) sJIA and no MAS; 2) sJIA and subclinical MAS; 3) sJIA and MAS.

- Disease activity is measured using PhGAS. PhGAS < 3 intended to define a low risk group of patients that may not need biologics or glucocorticoids (e.g., NSAID monotherapy).
Subclinical MAS is defined as: elevated inflammatory marker (CRP), disproportionately low platelet, elevated ferritin, hepatosplenomegaly, +/- coagulopathy.

MAS is defined using Ravelli criteria; however, it is notable that these are classification criteria and sensitivity is < 80%, and therefore, physician judgement is the most important element.

Improvement is defined as ≥ mpACR 50 at 2 weeks (resolution of fever and down trending ESR/CRP indicative of improvement in systemic inflammatory component and decreasing joint count reflecting arthritis).

INTERVENTIONS:

Nonsteroidal anti-inflammatory drugs (NSAIDs)	Any at therapeutic dosing [ibuprofen, naproxen, tolmentin, indomethacin, meloxicam, nabumetone, diclofenac, piroxicam, etodolac, celecoxib]
Non-biologic disease modifying anti-rheumatic drugs (DMARDs)	Methotrexate, Calcineurin inhibitor
Biologic DMARDs	IL-1 inhibitors: Canakinumab, Anakinra, Rilonacept IL-6 inhibitors: Tocilizumab, Sarilumab IL-18 inhibitors: Tadekenig alpha JAK inhibitors: Tofacitinib, Baracitinib Interferon gamma inhibitors: Emapalumab B cell inhibitors: Rituximab Costimulator blockers: Abatacept
Glucocorticoids	Oral
Intravenous	

Medications not addressed | Sarilumab, TNF inhibitors

Non-medical interventions | Physical Therapy (PT)
| Occupational Therapy (OT)
| Dietary changes
| Herbal supplements

OUTCOMES:

Critical outcomes
- Achievement of inactive disease
- Avoiding emergence of MAS
- Resolution of subclinical MAS
- Prevention of re-emergence/progression to overt MAS
- Resolution of overt MAS
- Mortality
- ICU admission
- Hospital admission
- Prediction of persistent systemic disease activity at 6 months
American College of Rheumatology (ACR)
Juvenile Idiopathic Arthritis Guideline

Project Plan – August 2019

- Response to treatment/inactive disease
- Sustained response to medication (no development of tolerance/antibodies)
- Growth
- Ability to taper/discontinue steroids
- Prevention of exacerbation
- Minimizing side effects/medication toxicity (steroids)
- Predict ability to wean treatment without disease flare
- Proportion of durable inactive disease off therapy

Important outcomes
- Minimizing side effects/medication toxicity (other)
- Duration of hospitalization
- Non-response to NSAIDs
- Non-response to treatment
- Partial response to treatment
- Patient preference / quality of life
- Adherence

Initial and subsequent therapy for sJIA and no MAS:

Treatment naïve, newly diagnosed sJIA patients with no MAS:

20. In patients with treatment naïve, newly diagnosed sJIA without MAS, should non-DMARD treatment (NSAIDS, glucocorticoids) be used as initial therapy?

21. In patients with treatment naïve, newly diagnosed sJIA without MAS, should DMARD treatment (methotrexate, calcineurin inhibitor) be used as initial therapy and is there a preferred order?
22. In patients with treatment naïve, newly diagnosed sJIA without MAS, should biologic treatment (anakinra, canakinumab, tocilizumab or others) be used as initial therapy and is there a preferred order?

sJIA patients with no MAS who do not respond to initial therapy:

23. In patients with sJIA without MAS who do not respond to initial therapy with non-biologic treatments (NSAIDs, glucocorticoids, DMARDs), should non-biologic treatments be combined or biologic treatment started?

Initial and subsequent therapy for SJIA and subclinical MAS:

24. In patients with sJIA, does the presence of subclinical MAS alter the treatment paradigm?

Initial and subsequent therapy for SJIA and overt MAS:

25. In patients with SJIA and overt MAS, is biologic therapy superior to calcineurin inhibitors in achievement of inactive disease and resolution of MAS?

26. For non-response or partial response to biologic therapy, is addition of calcineurin inhibitor superior to etoposide or IVIG or plasmapheresis at achievement of inactive disease, resolution of MAS?

Other

27. In SJIA patients who cannot achieve inactive disease despite treatment with both IL-1 and IL-6 agents and/or are chronically steroid dependent, is chronic stable steroid treatment superior to non-steroid treatments (cytoxan or abatacept or rituximab or IVIG or mesenchymal stem cell transplant or bone marrow transplant) at achievement of inactive disease, achievement of partial response, growth, ability to taper/discontinue steroids, and minimize side effects/medication toxicity?

28. In SJIA patients with inactive disease treated with oral steroids, is taper to discontinuation of steroids superior to continuing long-term stable dose steroids for preventing disease flare and minimizing side effects/medication toxicity?

29. In SJIA patients in clinical remission of biologic monotherapy, is tapering by decreasing dose superior to tapering dosing interval at preventing disease exacerbation, preventing development of anti-drug antibodies and minimizing medication toxicity?
Specific medication screening irrespective of disease subtype

NSAID monitoring
30. Is there a recommended laboratory screening schedule (complete blood count, comprehensive metabolic panel and urinalysis) for patients receiving chronic daily NSAIDs?

Methotrexate monitoring
31. Is there a recommended laboratory screening schedule (complete blood count, comprehensive metabolic panel) for patients being treated with methotrexate (po or sq)?
32. After methotrexate (po or sq) is initiated, is there a recommended medication change secondary to elevated liver function tests and decreased neutrophil or platelet count?

Sulfasalazine monitoring
33. Is there a recommended laboratory screening schedule (complete blood count, comprehensive metabolic panel) for patients being treated with sulfasalazine?
34. After sulfasalazine is initiated, is there a recommended medication change in response to elevated liver function tests and decreased neutrophil or platelet count?

Leflunomide monitoring
35. Should patients receiving leflunomide have serum creatinine, urinalysis, complete blood cell count, and liver enzymes before and during treatment, per manufacturer’s recommendations?
36. After leflunomide is initiated, should medication dosage be altered according to the package insert secondary to elevated liver function tests?
Hydroxychloroquine monitoring
37. Should patients receiving treatment with hydroxychloroquine have annual screening tests with automated visual fields, if age appropriate, plus spectral-domain optical coherence tomography (SD OCT) versus starting annual screening 5 years after treatment onset?
38. Is there a recommended laboratory screening schedule (complete blood count, comprehensive metabolic panel) for patients being treated with hydroxychloroquine?

TNF inhibitor monitoring
39. Is there a recommended laboratory screening schedule (complete blood count, comprehensive metabolic panel and urinalysis) for patients receiving TNF inhibitor treatment?

Abatacept monitoring
40. Is there a recommended laboratory screening schedule (complete blood count, comprehensive metabolic panel and urinalysis) for patients receiving abatacept treatment?

Tocilizumab monitoring
41. Should patients receiving tocilizumab have serum creatinine, urinalysis, complete blood cell count, and liver enzymes before and during treatment, per manufacturer’s recommendations?
42. After tocilizumab is initiated, should medication dosage be altered according to the package insert secondary to elevated liver function tests, neutropenia and/or thrombocytopenia?

Anakinra monitoring
43. Is there a recommended laboratory screening schedule (complete blood count, comprehensive metabolic panel and urinalysis) for patients receiving anakinra treatment?
Canakinumab monitoring
44. Is there a recommended laboratory screening schedule (complete blood count, comprehensive metabolic panel and urinalysis) for patients receiving canakinumab treatment?

Infection screening
45. Should all children have infection titers (measles, varicella, hepatitis B, hepatitis C) checked prior to starting immunosuppressive medication?
46. Should children with no evidence of immunity to important infections have a booster immunization prior to starting immunosuppressive medication?

TB Surveillance
47. Should screening for TB be done prior to starting biologic DMARD therapy and then annually in children?
48. In children receiving biologic DMARD therapy, is there a preferred method of TB screening?

Vaccination

Definitions:

- **Immunosuppression** is defined by use of DMARDs, biologics, and/or corticosteroids.
- **Inactivated vaccines** include tetanus/diphtheria/acellular pertussis (Tdap), pneumococcal vaccines (conjugate PCV-13 or polysaccharide PPV-23), meningococcal vaccines (MenACWY or MenB), human papillomavirus (HPV), and inactivated influenza vaccine.
- **Live attenuated vaccines** include the varicella vaccine, MMR vaccine, live attenuated influenza vaccine, and rotavirus vaccine.

49. In JIA patients *not on immunosuppression*, do inactivated or live attenuated vaccines result in flare of disease?
50. In JIA patients *not on immunosuppression*, are patients able to develop protective antibodies against infections targeted by the vaccine?
51. In JIA patients *on immunosuppression*, do inactivated vaccines result in flare of disease?
52. In JIA patients on immunosuppression, are patients able to develop protective antibodies against infections targeted by the vaccine?

53. In JIA patients on immunosuppression, can treatment with live attenuated vaccines be given safely (initial dose, booster dose)?

54. Can live attenuated vaccines be used safely in the households of children with JIA on immunosuppression?

Imaging modalities

Inflammation and damage detection

55. In children with Juvenile Idiopathic arthritis, is any specific imaging technique recommended to best detect inflammation and damage, make a diagnosis, predict structural damage, flare or treatment response?

Imaging and intraarticular injections

56. In children with Juvenile Idiopathic arthritis who require intraarticular corticosteroid injections, should injections be done with imaging guidance?
APPENDIX B – Participant Disclosures

In order for the College to most effectively further its mission and to otherwise maintain its excellent reputation in the medical community and with the public, it is important that confidence in the College’s integrity be maintained. The cornerstone of the ACR’s Disclosure Policy is disclosure of actual and potential conflicts so that they can be evaluated by the College in order to avoid undue influence of potential conflicts. The purpose of the ACR’s Disclosure Policy is identification of relationships which may pose actual or potential conflicts. These actual or potential conflicts can then be evaluated by the College so that adjustments can be made that will avoid any undue influence. This policy is based on the principle that, in many cases, full disclosure of the actual or potentially conflicting relationship will itself suffice to protect the integrity of the College and its interests.

<table>
<thead>
<tr>
<th>Participants</th>
<th>Role</th>
<th>Primary Employer</th>
<th>Sources of Personal Income (salary information from primary employer is not required):</th>
<th>Intellectual Property</th>
<th>Research Grants/Contracts</th>
<th>Investments to Include Medical Industry and Nonmedical Industry</th>
<th>Organizational Benefit</th>
<th>Activities with Other Organizations</th>
<th>Family or Other Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarah Stiel</td>
<td>Core Team - PT</td>
<td>Hospital for Special Surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniel B. Morton</td>
<td>Core Team - Content Expert</td>
<td>Karger University</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniel E. Morton</td>
<td>Core Team - Content Expert</td>
<td>Kansas University</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Jennifer Horonjeff</td>
<td>Core Team - Consultation and Expert</td>
<td>Children's Hospital of Philadelphia</td>
<td>Adastra BioPharma; Wyeth Pharma; Amgen; Abbott; Pfizer; Hoffman La-Roche; Novartis; UCB; Taiho; Novavax; Roche; Bristol Myers Squibb; Abbvie; Funtinal Research</td>
<td>N/A</td>
<td>N/A; BMS: B101-214 Registry; Roche WA63201; LTE CTA; Jensen; ON-TIT-SABRECHI CTA; Roche WA8203 (with) CTAs; Abbvie Canvas Contract; SBI BiMAA Canvas Contract; GSK Canvas Contract; Octave Screening Committee; Novartis Securum Contract; Pfizer 1600 Screening Committee Contract; Pfizer TOCA Canvas Contract; Roche WA523531 Contracting Center</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Lucian Bonn</td>
<td>Core Team - Content Expert</td>
<td>Seattle Children's Hospital</td>
<td>Novartis</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>AP</td>
</tr>
<tr>
<td>Carla A. Cuillo-Garcia</td>
<td>Core Team - GRADE Expert</td>
<td>McMaster University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A; The Journal of Pediatrics; World Allergy Journal; MacGRADE</td>
</tr>
<tr>
<td>Maria Klein Glithrow</td>
<td>BOD/Liaison</td>
<td>Alex & Robert H. Lurie Children's Hospital of Chicago</td>
<td>UpToDate</td>
<td>N/A</td>
<td>AAM; British Columbia Heart & Stroke Society; CARRA; ACP; JAMA; Canadian Institutes of Health Research; NAMS; NICE; CTA; Pfizer; Abbott</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A; Arthritis Foundation</td>
<td></td>
</tr>
<tr>
<td>John Shulman</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Kathy Cooper</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; AAP; ARPOC</td>
</tr>
<tr>
<td>Barbara Glidden</td>
<td>CCRS</td>
<td>Children's, Hartford CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Elaine Romoey</td>
<td>CCRS</td>
<td>Children's National Medical Center</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Janet Barker-Sinley</td>
<td>CCRS</td>
<td>Children's National Medical Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A; Pediatric Rheumatology Collaborative Study Group (PRCSG), Childhood Arthritis and Rheumatology Research Alliance, American Academy of Pediatrics</td>
</tr>
<tr>
<td>Lisa Valle</td>
<td>CCRS</td>
<td>Children's Hospital for Specialty Care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A; Best Doctors</td>
</tr>
<tr>
<td>Lyndsey Hayes</td>
<td>CCRS</td>
<td>Children's National Medical Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A; AAP; Arthritis Foundation; NAI</td>
</tr>
<tr>
<td>Mari T. Graziani</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Melissa Martin</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Academy of Pediatrics</td>
</tr>
<tr>
<td>Rebecca Giseman</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics</td>
</tr>
<tr>
<td>Kimberly Scullin</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Katherine E. Karcher</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Academy of Pediatrics; CARRA; Pediatric Dermatology Research Alliance</td>
</tr>
<tr>
<td>Christina Fall</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Christopher A. Knobloch</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Adam L. Friedman</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Academy of Pediatrics; CARRA; Pediatric Dermatology Research Alliance</td>
</tr>
<tr>
<td>Jennifer H. Barnhart</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>David J. McDonald</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Sarah M. Bode</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Michelle Elmore</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Mary B. Bruce</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Jason R. Dennis</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Emily H. Karcher</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Kelly T. Angela-Haan</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Tovey Redmond</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Jennifer H. Barnhart</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
<tr>
<td>Catherine Murphy</td>
<td>CCRS</td>
<td>Children's Hospital of Philadelphia</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>N/A; American Board of Pediatrics; ACR; AAP; Arthritis Foundation</td>
</tr>
</tbody>
</table>

The table above includes information on the potential conflicts of interest for each participant. The College's Disclosure Policy requires disclosure of actual and potential conflicts so that they can be evaluated by the College in order to avoid undue influence of potential conflicts. The purpose of the ACR's Disclosure Policy is identification of relationships which may pose actual or potential conflicts. These actual or potential conflicts can then be evaluated by the College so that adjustments can be made that will avoid any undue influence.